首页
产品服务
超算云
智算云
超算行业云
设计仿真云
运维服务
软件产品
解决方案
气象海洋超算云
人工智能超算云
生命科学行业云
企业级混合云
院校级混合云
服务中心
常见问题
软件下载
新闻资讯
并行教育
会议竞赛
并行学园
超级云播课
并行基金
关于并行
企业简介
市场活动
联系我们
加入我们
新闻资讯

并行算力应用案例丨清华大学徐勇教授、段文晖教授研究组在第一性原理计算与人工智能的交叉领域取得新进展

发布时间:2023-06-08 14:23 作者:




2021年6月,伴随科研项目对算力需求的增长,清华大学的徐勇教授、段文晖教授研究组选择与并行科技达成算力资源合作。相较传统超算中心,并行科技算力网络可以为科研需求提供更为丰富、灵活的资源,并通过完善的服务提高科研工作的研发效率。
近日,该研究组借助并行科技算力资源的帮助,在第一性原理计算与人工智能的交叉领域取得了新进展。其研发成果以“Deep-learning electronic-structure calculation of magnetic superstructures”为题发表在4月26日的《自然·计算科学》(Nature Computational Science),并入选为期刊封面文章。
同期,该杂志还发表了以“A deep-learning method for studying magnetic superstructures ”为题的Research Briefing、以“Computationally probing moiré magnets ”为题的Editorial、以“A Uncovering magnetic interactions in moiré magnets ”为题的News & Views介绍上述成果。




以下为该科研内容的成果展示:
文章转载自【清华物理系】公众号,点击此处阅读原文。
磁性超结构不仅可以作为研究量子效应的材料平台,也有丰富的潜在应用价值。基于密度泛函理论(DFT)的第一性原理电子结构计算是研究材料性质的重要手段,但受限于计算成本,这些方法难以直接用于研究磁性超结构。近期出现了一系列深度学习第一性原理计算方法,利用人工神经网络从DFT数据中学习,从而高效的预测大尺度材料的电子结构性质。然而,当前的方法主要集中在非磁性系统上,忽略了对磁性系统的研究。研究磁性系统需要高精度的先进深度学习方法来描述精妙的磁性物理效应,以高效准确地计算磁性材料的电子结构。
在先前工作中,徐勇、段文晖研究组提出深度学习第一性原理计算的理论框架和算法DeepH(Deep DFT Hamiltonian),该方法使用神经网络由材料原子结构预测DFT哈密顿量,从而可以预测所有单粒子图像下的物理性质,可极大加速非磁性材料的电子结构计算(进展报道:https://mp.weixin.qq.com/s/51Sip9RvT3nDI4G4CrttDw)。在最新的工作中,徐勇、段文晖研究组提出了xDeepH(extended DeepH)方法,用于学习磁性材料的DFT哈密顿量对原子结构和磁结构的依赖关系,并高效预测其电子结构与物性。
将物理先验知识融入神经网络架构设计,对深度学习的性能至关重要。DFT哈密顿量对原子结构和磁结构的依赖关系,在对称操作下(如旋转和时间反演)具有等变性。为此,该研究提出了一种拓展的等变神经网络,能考虑电子自旋和轨道自由度,使得神经网络保持在欧几里得群和时间反演操作下的对称性。此外,相对于原子结构,磁结构的改变对DFT哈密顿量的影响有着更强的局域特性。该研究设计了严格局域的神经网络更新函数,用于处理磁结构的输入;沿用传统的消息传递神经网络处理原子结构的输入。对于对称性和局域性这两点先验知识的妥善利用,显著提升了xDeepH的精度与泛化能力,并减小训练难度与代价。

xDeepH方法用于磁性材料的高效电子结构计算的示意图。a, xDeepH方法的流程图。以磁性材料的原子结构和磁结构作为输入,等变神经网络可预测其DFT哈密顿量。只需利用小尺度材料的DFT数据训练神经网络,就可以研究大尺度磁性超结构 (比如磁性斯格明子)。b, DFT哈密顿量作为原子结构和磁结构的函数,在空间旋转和时间反演操作下具有等变性。
通过对三种代表性复杂磁性超结构的准确预测,该研究表明了xDeepH方法的高精度和普适性。测试材料体系包括了单层NiBr2中的螺磁结构、CrI3纳米管中的弯曲磁性、双层莫尔转角CrI3中的磁性斯格明子(原胞中具有4336个原子)。该工作成果为研究磁性超结构提供了一种高效准确的计算方法,展现了解决DFT精度-效率两难困境的潜力。xDeepH方法有助于更好地理解磁性超结构的基本性质和量子现象,同时也有望为开发新型磁性材料和相关器件提供更高效的计算指导。
清华大学物理系徐勇教授和段文晖教授为该论文的通讯作者,研究组博士生李贺、本科生唐泽宸为共同第一作者。合作者还包括北京大学本科生贡晓荀和研究组博士生邹念龙。该工作得到了国家自然科学基金委基础科学研究中心(52388201)、国家杰出青年科学基金(12025405)、国家自然科学基金(11874035)、国家科技部(2018YFA0307100、2018YFA0305603)等项目单位的支持。
文章链接:
https://www.nature.com/articles/s43588-023-00424-3
Research Briefing链接:
https://www.nature.com/articles/s43588-023-00425-2
Editorial链接:
https://www.nature.com/articles/s43588-023-00451-0
News & Views链接:
https://www.nature.com/articles/s43588-023-00434-1

xDeepH开源程序:

https://github.com/mzjb/xDeepH


算力已逐渐成为助力各项科研事业发展的生产力资源之一。作为国内的超算云服务和运营服务提供商,并行科技始终秉承“助力科技强国,让计算更简单”的企业使命,始终致力于布局“算力网络”的建设与发展,积极参与“全国算力一张网”的实施构建,使算力汇聚成为“资源池”,助力千行百业更好地构建数字中国。

目前,并行科技通过共建资源与合作资源,已接入超80,000台服务器,总计算力超1,000PFlops,存储资源超800PB。已为能源、制造、气象、科研教育、电信、金融、动漫等20个领域的行业用户及企事业单位、科研院所提供了高性价比的算力资源。





欢迎免费体验Paratera并行产品免费试用

助力科技强国 让计算更简单

海量计算资源 减少排队 按需付费 7x24小时服务

——    填写试算信息,专属客服为您免费开通2000核时或200元卡时试算    ——

*为必填项